Alternative Monetary-Policy Instruments and Limited Credibility: An Exploration

Javier García-Cicco

Universidad del CEMA



November, 2021

・ロト ・御 ト ・ ヨト ・ ヨト ・ ヨー

Most studies on policy rules heavily influenced by IT:

- Interest rate as the instrument + rational expectations (RE).
- Even those relaxing RE still focus on interest rate rules.
- IMF AREAER database 2019:

|                       | IT | Money Target | FX anchor | Other |
|-----------------------|----|--------------|-----------|-------|
| Total                 | 23 | 12           | 49        | 15    |
| Low Income & Emerging | 17 | 12           | 42        | 14    |
| FX management         | 4  | 11           | 49        | 14    |

% over 183 countries (excluding EMU members)

・ 同 ト ・ ヨ ト ・ ヨ ト

Most studies on policy rules heavily influenced by IT:

- Interest rate as the instrument + rational expectations (RE).
- Even those relaxing RE still focus on interest rate rules.
- IMF AREAER database 2019:

|                       | IT | Money Target | FX anchor | Other |
|-----------------------|----|--------------|-----------|-------|
| Total                 | 23 | 12           | 49        | 15    |
| Low Income & Emerging | 17 | 12           | 42        | 14    |
| FX management         | 4  | 11           | 49        | 14    |

% over 183 countries (excluding EMU members)

- RE implies high degree of credibility (agents forecast knowing the policy rule that will be implemented in the future); which cannot be taken from granted in Low Income & Emerging countries.
- Can limited credibility (LC) influence the choice of policy instrument?

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Introduction

#### What do we do?

- Use a NK-SOE DSGE model as a laboratory.
- ► LC: Adaptive learning for inflation-related variables.
  - ▶ VAR with time-varying long-run inflation expectations (anchoring).
  - Surprises in inflation and FX can shift long-run expectations.
- Study dynamics after a world-interest-rate shock under 3 alternatives:
  - ▶ Taylor rule for the interest rate (*R*), calibration based on Chile.
  - ► Constant money supply (M).
  - Crawling peg (S).

#### Introduction

#### What do we do?

- Use a NK-SOE DSGE model as a laboratory.
- LC: Adaptive learning for inflation-related variables.
  - ▶ VAR with time-varying long-run inflation expectations (anchoring).
  - Surprises in inflation and FX can shift long-run expectations.
- Study dynamics after a world-interest-rate shock under 3 alternatives:
  - ▶ Taylor rule for the interest rate (*R*), calibration based on Chile.
  - ► Constant money supply (M).
  - ► Crawling peg (S).

Preview of results:

- ▶ RE: Trade-off between R and M: M insulates activity, but is more inflationary. Larger recession with S rule, no clear inflation advantage.
- LC if only inflation surprises affect long-run expectations: qualitatively similar trade-offs, differences are exacerbated (more persistence).
- LC if FX surprises also affect long-run expectations: less insulation and more inflation with M. Potential role for FX stabilization.

## Main ingredients:

- SOE, free capital mobility, incomplete financial markets.
- Households: Consumption (habits), labor supply, money demand, foreign and domestic bonds.
- Home goods: Produced using labor and capital.
- Final goods: Combine home and foreign goods. Calvo prices, indexation.
- Dominant currency pricing (limited expenditure switching).
- Calvo sticky wages, indexation.
- Capital accumulation, adjustment costs.

・ 戸 ト ・ ヨ ト ・ ヨ ト

## Main ingredients:

- SOE, free capital mobility, incomplete financial markets.
- Households: Consumption (habits), labor supply, money demand, foreign and domestic bonds.
- Home goods: Produced using labor and capital.
- Final goods: Combine home and foreign goods. Calvo prices, indexation.
- Dominant currency pricing (limited expenditure switching).
- Calvo sticky wages, indexation.
- Capital accumulation, adjustment costs.
- Inflation-related expectations are relevant for...
  - Phillips curves (prices and wages).
  - lnter-temporal choices (consumption, investment, etc.):  $\hat{R}_t E_t\{\hat{\pi}_{t+1}\}$ .

・ロット (雪) ( き) ( き) ( き)

## Main ingredients:

- SOE, free capital mobility, incomplete financial markets.
- Households: Consumption (habits), labor supply, money demand, foreign and domestic bonds.
- Home goods: Produced using labor and capital.
- Final goods: Combine home and foreign goods. Calvo prices, indexation.
- Dominant currency pricing (limited expenditure switching).
- Calvo sticky wages, indexation.
- Capital accumulation, adjustment costs.
- Inflation-related expectations are relevant for...
  - Phillips curves (prices and wages).
  - lnter-temporal choices (consumption, investment, etc.):  $\hat{R}_t E_t\{\hat{\pi}_{t+1}\}$ .
- Shock to be analyzed: World interest rate / country premium  $(R^W)$ .
  - Size: +280 a.b.p.
  - AR(1) persistence: 0.7 (half-life 5 quarters).

Price- and wage-inflation expectations determined by empirical model. Let x<sub>t</sub> ≡ [π̂<sub>t</sub>, Δ̂Ŵ<sub>t</sub>, Δ̂Ŝ<sub>t</sub>]', the forecasting model is

$$\begin{aligned} x_t &= (I - \Phi) Z \alpha_t + \Phi x_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, H) \\ \alpha_t &= \alpha_{t-1} + \eta_t, \quad \eta_t \sim \mathcal{N}(0, \sigma_\eta^2) \end{aligned}$$

 $\alpha_t$  is a scalar  $\Rightarrow$  VAR with a common time-varying long-run trend.

Price- and wage-inflation expectations determined by empirical model. Let x<sub>t</sub> ≡ [π̂<sub>t</sub>, Δ̂Ŵ<sub>t</sub>, Δ̂Ŝ<sub>t</sub>]', the forecasting model is

$$\begin{aligned} x_t &= (I - \Phi) Z \alpha_t + \Phi x_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, H) \\ \alpha_t &= \alpha_{t-1} + \eta_t, \qquad \eta_t \sim \mathcal{N}(0, \sigma_\eta^2) \end{aligned}$$

 $\alpha_t$  is a scalar  $\Rightarrow$  VAR with a common time-varying long-run trend. Inference about  $\bar{\alpha}_t \equiv E_t \{\alpha_t\}$ : Constant-gain filter,

$$\bar{\alpha}_{t} = \bar{\alpha}_{t-1} + K \left[ x_{t} - \Phi x_{t-1} - (I - \Phi) Z \bar{\alpha}_{t-1} \right],$$

where  $K = [K_{\pi}, K_W, K_S]$  is a function of H and  $\sigma_{\eta}^2$ .

Two channels:

- Persistence (emphasized elsewhere, mostly closed economy models).
- FX movements can affect long-run inflation expectations

Estimation of forecasting model: Argentina and Chile. Observables:

- Core inflation, Nominal wage growth, FX depreciation.
- One-year-ahead market expectations of inflation and FX depreciation.
- Sample: 2004-2019.
- Some estimation results:

| Parameter                                 | Argentina | Chile |
|-------------------------------------------|-----------|-------|
| $100 \times \frac{V(\alpha_t)}{V(\pi_t)}$ | 13.8      | 2.9   |
| $K_{\pi}$                                 | 0.20      | 0.14  |
| $K_W$                                     | 0.23      | 0.04  |
| $K_S$                                     | -0.02     | 0.00  |

▲御 → ▲ 注 → ▲ 注 →

#### Limited Credibility / Imperfectly Anchored Expectations

Non-linear effect? Large surprises:  $S_t - E_{t-1}{S_t} > 1$  St.Dev.



 $\Delta E_t \{ \pi_{t,t+12} \}$  vs.  $S_t - E_{t-1} \{ S_t \}$ 

 $\Rightarrow$  2 Calibrations:  $K_S = 0$ ,  $K_{\pi} = K_W = 0.2$ ; and  $K_S = K_{\pi} = K_W = 0.2$ .

## $R^W$ Shock with Alternative Instruments, RE



# $R^W$ Shock with Alternative Instruments, LC, $K_S = 0$



## $R^W$ Shock with Alternative Instruments, LC, $K_S = 0.2$



| <b>NA/ IC</b> |         |       |             |
|---------------|---------|-------|-------------|
| Waltara       | Familya | ant ( | omnaricon   |
| vvenare       | Lyuiva  |       | Juniparisun |
|               |         |       |             |

| Rules                            | Λ     |  |  |
|----------------------------------|-------|--|--|
| Rational Expectations            |       |  |  |
| $M \ { m vs} \ R$                | -0.17 |  |  |
| S vs $R$                         | 0.94  |  |  |
| Limited Credibility, $K_S = 0$   |       |  |  |
| $M \ { m vs} \ R$                | 0.23  |  |  |
| S vs $R$                         | 0.95  |  |  |
| Limited Credibility, $K_S = 0.2$ |       |  |  |
| $M \ { m vs} \ R$                | 0.19  |  |  |
| S vs $R$                         | 0.46  |  |  |
|                                  |       |  |  |

Notes:  $\Lambda$  is the welfare-equivalent-consumption compensation relative to the *R*-rule case (in %).

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣

Sensitivity analysis:

- Financial Frictions + Liability Dollar.: Smaller cost of peg if  $K_S > 0$ .
- Limited Expenditure Switching (good-level habits): Similar to baseline.
- Domestic Banks: Smaller cost of peg if  $K_S > 0$ .
- Restricted Access to Financial Markets (TANK): some disagreement under RE and K<sub>S</sub> = 0, but similar comparison if K<sub>S</sub> > 0.
- All combined: Smaller cost of peg if  $K_S > 0$ .

- Model-based analysis of relevant trade-offs in choosing simple rules for alternative monetary-policy instruments.
- RE: Trade-off (inflation vs. activity) between M and R rules. No clear benefit of S rule.
- ▶ LC,  $K_S = 0$ : Similar to RE, larger differences, more persistence.
- LC, K<sub>S</sub> > 0: Less obvious advantages of M rule. Potential benefit of stabilizing FX, specially under financial frictions.

・ 同 ト ・ ヨ ト ・ ヨ ト

# Thank You!